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ABSTRACT

The singular integral equation technigue is
used to determine the normal modes of propaga-
tion in general planar transmission lines. Ta-
king fin-lines as example it is demonstrated,
how high-order modes can effectively and accu-
rately be calculated. Some of these modes show
an unusual evanescent nature for certain combi-
nations of parameters. The modes of this type
exist always in pairs with their squared propa-

gation constants being complex conjugate.

INTRODUCTION

General planar transmission lines are defined here
as multi-layer structures with an arbitrary number
of air-dielectric and/or dielectric-dielectric in-
terfaces where conducting strips are mounted. The
accurate determination of the normal modes of pro-
pagation in these guiding structures is of funda-
mental importance. Due to the completeness proper-
ty of the set of normal modes /1/, an arbitrary
electro-magnetic field inside the guiding structure
can be expanded within this set, so that the pro-
blem of determining the field, which can usually be
formulated as a solution of integro-differential
equations, is reduced to a solution of matrix equa-
tions. This includes, for example, the problems of
scattering by conducting or dielectric obstacles
inside guiding systems /2/, scattering by apertures
in the boundaries /3/, and discontinuities between
different guiding systems /4/. Galerkin's method

in the spectral domain had been successfully used
for eigenmode calculations by almost all authors,
e.g. in /5/. As has been shown in /6/, this method

is superior with respect to computational efforts
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if the dominant and the first few higher-order
modes are to be analyzed. However, if modes of
still higher order are to be determined, this me-
thod becomes computationally time consuming. The
problem of analyzing these high-order modes is as

yet unsolved.

The singular integral equation technique characte-
rizes the problem by a characteristic matrix of re-
latively low order even in the case of high-order
modes. Hence it will be applied here to the analy-
sis of general planar transmission lines with the
generalized unilateral fin-line structure in Fig. 1
as illustrating example. In particular, it will be
shown that a matrix of order 7 is quite sufficient
to yield accurate results up to the 30th mode. An-
other inherent advantage is that all matrix ele-
ments are given analytically so that neither in-
finite sums nor numerical integrations are in-

volved.

BASIC FORMULATION

The electromagnetic field in the generalized uni-
lateral fin-line structure of Fig. 1 is a linear

combination of LSM and LSE fields /1/.
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Fig. 1: Generalized unilateral fin-line
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These both parts independently satisfy all inter-

face conditions. They are, however, coupled in or-
der to fulfill the edge condition on the conduc-

ting fins /6/. Hence we can write for the tangen-
tial electric field gt and for the surface current

Es at the interface x = O:

with superscripts "e" and "h" referring to LSM and

LSE parts, respectively.

It has been shown in /6/ that the LSM part is com-
pletely characterized by the z-components Ei and
Je, because:

z

Ej ~ dEj/dy , Jj ~ dJ:/dy

whereas the LSE part is completely characterized by
because:

the y-components E: and J:,

Eh ~ dEh/dy , Jh ~ th/dy
z y z y
Taking the perfectly conducting walls at y = 0 and

y = b into account, the tangential electric field

and surface current components can be written as:

e ® e

EZ = n§1 An sin (nTy/b),

h < h
Ey = ngo An cos(nTy/b),

- jee. £ F® A% sin(nmy/b)

2 =4 n=1 n y ’

h X h . h

= j X F L. (2

Jy (l/quO) RIS An cos{(nTy/b) (1)

h .
FE and Fn can be shown to represent the Fourier

series expansion coefficients of the LSM and LSE
/7/.

Green's functions, respectively,

The singular integral equation technique can now be

formulated by the following steps:

1. Two cosine-series fl(y) and fz(y) are construc-
ted in terms of the tangential electric field

Et s0 that they are only unknown in the slot

region (sl <y < 32):

f oy = £ aY costamysb)

1YY= q2g My COSINTY/DY,

fy) = 5 a'?) costamysb) (2)
2Y7 = ngg Py y Tt
The expansion coefficients Aﬁl) and AﬁZ) are

linear combinations of A: and A:.
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2. Two sine-series f}(y) and fA(y) are constructed

in terms of the surface current J in a way that
s (1)

n

so that the expansion

their coefficients asymptotically approach A

(2)

and An , Tespectively,

coefficients of the series gl(y) and gz(y), de-

fined as:
1y
9,(y) = n§1 AT sin(nmy/b) - Fo(y),
(2) .
9,(y) = n§1 A% sin(nmy/b) - f,(y) L(3)

are vanishing asymptotically.

3. Applying the boundary conditions to be satisfied
()

n

are determined in terms of integrals of

by fl(y) and fz(y), the coefficients A and

A(2)
n
fl(y) and fz(y), respectively, which are taken

over the slot region.

4. Substituting these integrals into equations (3)
and applying the boundary conditions to be sa-
tisfied by fz(y) and fa(y), one arrives at two
integral equations relating fl(y) and fz(y) to
gl(y) and gz(y), respectively. These integral
equations are of standard singular type. Their

solutions are well-known (see e.g. /8/).

Because their expansion coefficients are asymp-
totically vanishing, gl(y) and gz(y) may be
truncated at the N-th term. Hence fl(Y) and
f_(y) are then known in the slot region in terms

2
of A(l) and A(2), (n £ N).
n n

(y) in the

A%Z), (n £ N)
n

6. A back-substitution of f (y) and f

iy

integrals determining An and

-step 3-, in conjunction with additional condi-

tions (which will be discussed later) results
in a finite, homogeneous system of linear equa-

tions, from which the propagation constants and

the field expansion coefficients of the diffe-

rent modes can be calculated.

In applying the singular integral equation tech-

nique to the general planar structure, one must be

careful in constructing fl(y), Fz(y) and fB(y),

fa(y)’ which are related to E, and Qs’ respective~-

t
ly. Both Ey’ JZ and dEz/dy, dJy/dy are singular

at the fin edges, (y = Sys Y The order

= s,) /9/.
Iy - 17 for

of singularity is for all cases. This

is the proper singularity, the singular integral



equation technique can deal with. Hence any diffe-
rentiation of either Ey’ Jz, dEZ/dy or dJy/dy with
respect to y is not allowed in the construction of

fl(y), fz(y), Fj(y) and fa(y).

There are two ways of how to construct these func-

(1) (2)

tions. The first is to express An and An as
linear combinations of AE and A:, so that the LSM
and LSE parts of the field are coupled from the

first beginning. This will be called the coupling

formulation. The second way it to choose Aﬁl)~A:
2
and Aﬁ )NA:, so that the LSM and LSE parts are de-
coupled. The coupling will then be taken into ac-
count as a final step, as will be shown below. This
will be called the decoupling formulation.
THE COUPLING FORMULATION

Functions fl(y) and fz(y) are constructed as:

Fl(y) = dEz/dy,

£ y) = [(K2-BP)E_+3B(dE_/dy) ]/ jun e (8)
2 [s] y z o]

and fz(y) and fA(y) as:

h,2 e 2 h e h

f = - j j

L) [(«"g%-x k)3, +3BK (dJy/dy)]/JweoK K,
£, = [jB(Ke-Kh)JZ+Kh(dJy/dy)]/Kexh .(5)

k® and k" are the asymptotic limits of (nﬂ/b)Fi

h
and Fn/(nﬂ/b), respectively.

It can be seen that the vanishing of fl(y) and
f2(y) on the fins and of fB(y) and fa(y) in the
slot region (the boundary conditions to be conside-
red) are just necessary conditions for the vanis-
hing of Et and QS on their respective regions (i.e.
E, on the fins and 3 in the slot). Thus Ey

t
will vanish on their respective regions, EZ

and J
z
and J ,
y
however, can still assume a non-zero constant value
on their respective regions. Because points y = O,
y:

stant is automatically zero as far as EZ is con-

b (where EZ = 0) belong to the fins, this con-

cerned. Hence it is sufficient to impose one addi-
tional condition on Jy, namely its vanishing at any

point within the slot region.
THE DECOUPLING FORMULATION

We now construct the various functions according

to:

137

e .
df /dy = T "E, = -AEC/3B,

Fo(y) = i*(V.xE,) = A Eh/jB .(6)

2 2 Xy toy

. e e e
Faly) = -yt 3,/ Jwe K = —éth/MEOBK ,
. 5. ho B o h

af,zdy = Jou [1-(Z xa ) ]Ik - wh A, 307K A7)

yt and At mean del- and Laplacian operator in y-z

plane, respectively, and i is the unit vector in x

-direction.

The boundary conditions to be imposed on the four
functions (which are: dfl/dy =0 = fz(y) on the

fins and fj(y) =0 = dFA/dy in the slot) are again

necessary ones for the vanishing of Et and gs an

their respective regions. They guarantee only that

the individual components of E, and QS are harmonic

t
functions on their respective regions so that addi-

tional conditions have again to be imposed. They

can be shown to just be the vanishing of one compo-

nent of E_ and of gs on the boundaries of their re-

t

spective regions, i.e. at y = S1» ¥ = S,

ACCURACY FOR HIGH-ORDER MODES

There is only one approximation involved into the

singular integral equation technique, namely the

truncation of the infinite series gl(y) and gz(y)

at the N-th term. It can, however, be proved that

the n-th coefficients of these series are negli-

gible if (nm/b)? > (e K2-p%). e
r-max o r-max

maximum Er in the multi-layer structure. This in-

means the

equality actually puts an upper limit on the number
of high - order modes which can be accurately cal-
culated, because the propagation constant of the
highest-order modes must satisfy:

1817 < [(nenym/b]2ee z

r-max o
For dimensions and dielectric constants normally
used, N = 3 (corresponding to a characteristic ma-
trix of order 7) is sufficient to give accurate re-

sults for the first 30 modes.

FIN-LINE MODES WITH COMPLEX 62

For certain combinations of parameters (i.e. fre-

quency, slot width, etc.), it has been found that

2 .
B” of one or more pairs of evanescent modes are no
longer real.

Instead, they have been found as com-



plex conjugate pairs in the complex plane.

2
Let 82 of one of these pairs be Bl and Bg. The
square roots which are physically possible for a
-JjBz Jwt

z-dependence e and a time dependence e can

be written as

B, =B -Ja, B, = -B - ja

where B and o are positive. This means that one
mode propagates in the +z-direction and is attenu-
ated in the same direction. The other mode is also
attenuated in this direction, it propagates, how-
ever, in the -z-direction, i.e. it represents an
"attenuated backward wave". From the first view, it
is easily stated that a mode with complex propaga-
tion constant Bl propagates in the same direction,
in which it is attenuated. This means a continous
energy loss, although the structure has been as-
sumed lossless. The other mode with propagation
constant 82 propagates to the opposite directieon in
which it is damped. This means a continous energy
gain, although the structure is passive. This point
of view would be correct only if the two modes were
not coupled. In fact, it has been found that the
two modes are so strongly coupled, that the elec-
tric field of each mode does not couple to its own
magnetic field, but to the magnetic field of the

other mode, i.e.

f(glxnf)°g§=0=f(gzx_11§)'d_ C (B
S S

J e, x np)egs = p #0, [ (e, x hy)eds = -px ... (9)
S S

Here gl(gl) and gz(ﬁz) are the transverse electric
(magnetic) field vectors of the modes with propaga-
tion constants Bl and 62, respectively, and S is the
fin-line cross-section. Egs. (8), (9) mean that
each mode cannot exist alone: both should always

exist together, if they exist.

Now we investigate these modes from the energy point
of view. Let us assume that the two gquestionable
modes are excited (by e.g. a certain discontinuity).
Because each of these modes it not coupled to the
other modes which may also be excited, it is suffi-
cient to study the energy contained in these two

modes only. Let E  and H, be the transverse electric

t t
and magnetic field vectors, respectively, of the

two superposed modes, i.e.

-8z -8,z -3Bz -3B,7

E . =A e El+Aze €

t™"1
Integrating the pointing vector over the fin-line
cross-section, and making use of egs. (8) and (9),

one obtains

P =/  (E, x H¥)*ds = j W sin (2Bz + @) e 202
sttt
where Al A; p = - (W/2) e I, The vanishing of the

real part of P guarantees that the two superposed
modes carry no power, i.e. they behave as a whole
evanescently. The energy stored in these superposed
modes oscillates along the line once being induc-
tive and once being capacitive in nature with a

superposed exponential decay.

Finally, we would like to state that, although this
phencmenon has been found in fin-lines, we believe
that it also exists in all other planar guiding
structures, at least in those with closed conduc-

ting boundaries.
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