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ABSTRACT

The singular integral equation technique is

used to determine the normal modes of propaga-

tion in general planar transmission lines. Ta-

king fin-lines as example it is demonstrated,

how high-order modes can effectively and accu-

rately be calculated. Some of these modes show

an unusual evanescent nature for certain combi-

nations of parameters. The modes of this type

exist always in pairs with their squared propa-

gation constants being complex conjugate.

INTRODUCTION

General planar transmission lines are defined here

as multi-layer structures with an arbitrary number

of air-dielectric and/or dielectric-dielectric in-

terfaces where conducting strips are mounted. The

accurate determination of the normal modes of pro-

pagation in these guiding structures is of funda-

mental importance. Oue to the completeness proper-

ty of the set of normal modes /1/, an arbitrary

electro–magnetic field inside the guiding structure

can be expanded within this set, so that the prO-

blem of determining the field, which can usually be

formulated as a solution of integro-differential

equations, is reduced to a solution of matrix equa-

tions. This includes, for example, the problems of

scattering by conducting or dielectric obstacles

inside guiding systems /2/, scattering by apertures

in the boundaries /3/, and discontinuities between

different guiding systems /4/. Galerkin’s method

in the spectral domain had been successfully used

for eigenmode calculations by almost all authors,

e.9. in /5/. As has been shown in /6/, this method

is superior with respect to computational efforts

if the dominant and the first few higher-order

modes are to be analyzed. However, if modes of

still higher order are to be determined, this me-

thod becomes computationally time consuming. The

problem of analyzing these high-order modes is as

yet unsolved.

The singular integral equation technique characte-

rizes the problem by a characteristic matrix of re-

latively low order even in the case of high-order

modes. Hence it will be applied here to the analy-

sis of general planar transmission lines with the

generalized unilateral fin-line structure in Fig. 1

as illustrating example. In particular, it will be

shown that a matrix of order 7 is quite sufficient

to yield accurate results up to the 30th mode. An-

other inherent advantage is that all matrix ele-

ments are given analytically so that neither in-

finite sums nor numerical integrations are in-

volved.

BASIC FORMULATION

The electromagnetic field in the generalized uni-

lateral fin-line structure of Fig. 1 is a linear

combination of LSM and LSE fields /1/.
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Fig. 1: Generalized unilateral fin-line
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These both parts independently satisfy all inter-

face conditions. They are, however, coupled in or-

der to fulfill the edge condition on the conduc-

ting fins /6/. Hence we can write for the tangen-

tial electric field Et and for the surface current

J at the interface x = O:
—s

e h e h

% ‘%+%’%=%+%

with superscripts “e” and “h” referring to LSM and

LSE parts, respectively.

It has been shown in /6/ that the LSM part is com-

pletely characterized by the z-components E: and

Jez, because:

E; - dE;/dy , Je - dJ;/dy
Y

whereas the LSE part is completely characterized by

the y-components Eh
h

and J , because:
Y Y

Eh - dE;/dy , J: - dJ;/dy
z

Taking the perfectly conducting walls at y = O and

y = b into account, the tangential electric field

and surface current components can be written as:

E; = n~l A; sin (nTry/b),

~h
= n~o A; cos(nny/b),

Y

J; ?= jLd&o n=l F: A: sin(nTry/b),

Jh
. (l/jfJJUo) n?. F: A: cos(nTry/b)

Y

F: and F
h

can be shown to represent
n

series expansion coefficients of the

Green’s functions, respectively, /7/

The singular integral equation techn

formulated by the following steps:

1. Two cosine-series fl(y) and f2(y)

. ..(1)

he Fourier

LSM and LSE

que can now be

are construc-

ted in terms of the tangential electric field

%
so that they are only unknown in the slot

region (s py<

fl(y) = “g. A(l)
n

f2(Y) = ?0 A(2)
n

s ):
2

cos(nTy/b),

cos(nmy/b) . ..(2)

The expansion coefficients A
(1)

and A~2) are
n

linear combinations of A:
h

and A
n“

2.

3.

4.

5.

6.

In

Two sine-series f3(y) and f4(y)

in terms of the surface current

their coefficients asymptotical.

and A~2), respectively, so that

coefficients of the series gl(y

fined as:

are constructed

J in a way that
–s

(1)
y approach An

the expansion

and g2(y), de-

gl(y) = fl A(l) sin(nmy/b) - f3(y),
n

92(y) = n~l A(2) sin(n~y/b) - f~(y) . ..(3)n

are vanishing asymptotically.

Applying the boundary conditions to be satisfid

by fl(y) and f2(y), the coefficients A:’) and

A(2)
are determined in terms of integrals of

n

fl(y) and f2(y), respectively, which are taken

over the slot region.

Substituting these integrals into equations (3)

and applying the boundary conditions to be sa-

tisfied by f3(y) and f4(y), one arrives at two

integral equations relating fl(y) and f2(y) to

gl(y) and g2(y), respectively. These integral

equations are of standard singular type. Their

solutions are well-known (see e.g. /8/).

Because their expansion coefficients are asymp-

totically vanishing, gl(y) and g2(y) may be

truncated at the N-th term, Hence fl(y) and

ffi(y) are then known in the slot reoion in terra

A back-substitution of f (y) and f (y) in the

~tl)
integrals determining and Af2), (nSN)

n n
-step 3-, in conjunction with additional condi-

tions (which will be discussed later) results

in a finite, homogeneous system of linear equa-

tions, from which the propagation constants and

the field expansion coefficients of the diffe-

rent modes can be calculated.

applying the singular integral equation tech-

nique to the general planar structure, one must be

careful in constructing fl(y), f2(y) and f3(y),

f4(y), which are related to E
–t

and J respective-
—s ‘

ly. Both E J and dEz/dy, dJy/dy are singular
Y’ z

at

of

is
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the fin edges, (y = Sl, y . S2) /9/. The order

singularity is Iy - S]-1’2 for all cases. This

the proper singularity, the singular integral



equation technique can deal with. Hence any diffe-

rentiation of either E J ~, dEz/dy or dJy/dy with
Y’

respect to y is not allowed in the construction of

fl(y), f2(y), f3(y) and f4(y).

There are two ways of how to construct these func-

tions.
(1)

The first is to express An and A~2) as

linear combinations of Ae and Ah~, so that the LSM
n

and LSE parts of the field are coupled from the

first beginning. This will be called the coupling

formulation. The second way it to choose A~’)-A~

and ~(2)-Ah

n
so that the LSM and LSE parts are de-

n’

coupled. The coupling will then be taken into ac-

count as a final step, as will be shown below. This

will be called the decoupling formulation.

THE COUPLING FORMULATION

Functions fl(y) and f2(y) are constructed as:

fl(y) = dEz/dy,

f2(y) = [

and f3(y)

f3(y) = [

k~-R2)Ey+jR(dEz/dy)]/jUUo . ..(4)

and f4(y) as:

khB2-Kek~)Jz+jRKh(dJy/dy )]/jU&oKeKh,

f4(y) = [jR(Ke-Kh)Jz+Kh(dJy/dy)]/KeKh . . . (5)

Ke and Kh are the asymptotic limits of (nTr/b)F~

and F~/(nm/b), respectively.

It can be seen that the vanishing of fl(y) and

f2(y) on the fins and of f3(y) and f4(y) in the

slot region (the boundary conditions to be conside-

red) are just necessary conditions for the vanis-

hing of E
–t

and J on their respective regions (i.e.
—s

E on the fins and J
–t

in the slot). Thus E and J
—s Y z

will vanish on their respective regions, E ~ and J
Y’

however, can still assume a non-zero constant value

on their respective regions. Because points y = O,

y = b (where E . O) belong to
z

stant is automatically zero as

cerned. Hence it is sufficient

tional condition on J namely
Y’

point within the slot region.

the fins, this con-

far as Ez is con-

to impose one addi-

its vanishing at any

THE DECOUPLING FORMULATION

We now construct the various functions according

to:

dfl/dy =

f2(y) =

f3(y) =

df&/dy =

~t”~t . -AtE~/j~,

l“(!txgt) = AtE~/jB . . . (6)

-~t”.ls/jUEoKe . -~tJ~/LUEoBKe,

jopo[~”(~tx~s )]/Kh = UPoAtJ;/3Kh . ..(7)

~t and At mean del- and Laplacian operator in y-z

plane, respectively, and ~ is the unit vector in x

-direction.

The boundary conditions to be imposed on the four

functions (which are: dfl/dy = O = f2(y) on the

fins and f3(y) . 0 = df4/dy in the slot) are again

necessary ones for the vanishing of E
–t

and J on
–s

their respective regions. They guarantee onlY that

the individual components of Et and <s are harmonic

functions on their respective regions so that addi-

tional conditions have again to be imposed. They

can be shown to just be the vanishing of one compo-

nent of E
–t

and of J on the boundaries of their re-
—s

spective regions, i.e. at y = Sl, y = S2.

ACCURACY FOR HIGH-OROER MOOES

There is only one approximation involved into the

singular integral equation technique, namely the

truncation of the infinite series gl(y) and g2(y)

at the N-th term. It can, however, be proved that

the n-th coefficients of these series are negli-

gible if (nTr/b)2 > (E k2-~2). Cr_max means the
r-max 0

maximum Er in the multi-layer structure. This in-

equality actually puts an upper limit on the number

of high - order modes which can be accurately cal-

culated, because the propagation constant of the

highest-order modes must satisfy:

1612< [( N+l)IT/b]2-c k2
r-max 0

For dimensions and dielectric constants normally

used, N = 3 (corresponding to a characteristic ma-

trix of order 7) is sufficient to give accurate re-

sults for the first 30 modes.

FIN-LINE MOOES WITH COMPLEX ~2

For certain combinations of parameters (i.e. fre-

quency, slot width, . . . etc.), it has been found that

62 of one or more pairs of evanescent modes are no

longer real. Instead, they have been found as com-
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plex conjugate pairs in the complex plane.

Let 62 of one of these pairs be 6’: and ~~. The

square roots which are physically possible for a

z-dependence e
-j~z jut

and a time dependence e can

be written as

B1=8-jct, 62=-i3-.j~

where R and ci are positive. This means that one

mode propagates in the +z-direction and is attenu-

ated in the same direction. The other mode is also

attenuated in this direction, it propagates, how-

ever, in the -z-direction, i.e. it represents an

“attenuated backward wave”. From the first view, it

is easily stated that a mode with complex propaga-

tion constant 61 propagates in the same direction,

in which it is attenuated. This means a continous

energy loss, although the structure has been as-

sumed lossless. The other mode with propagation

constant 62 propagates to the opposite direction in

which it is damped. This means a continous energy

gain, although the structure is passive. This point

of view would be correct only if the two modes were

not coupled. In fact, it has been found that the

two modes are so strongly coupled, that the elec-

tric field of each mode does not couple to its own

magnetic field, but to the magnetic field of the

other mode, i.e.

4( E, XE;)”Q= 0’J(S2XE;)”A . ..(8)
s

f (El x~; ).c+= p #o, j- (g* x~tl)”d&= -P* . ..($O

s s

Here gl(~l) and S2(~2) are the transverse electric

(magnetic) field vectors of the modes with propaga-

tion constants (31 and B2, respectively, and S is the

fin-line cross-section. Eqs. (8), (9) mean that

each mode cannot exist alone: both should always

exist together, if they exist.

Now we investigate these modes from the energy point

of view. Let us assume that the two questionable

modes are excited (by e.g. a certain discontinuity),

Because each of these modes it not coupled to the

other modes which may also be excited, it is suffi-

cient to study the energy contained in these two

modes only. Let E
–t

_t be the transverse electricand H

and magnetic field vectors, respectively, of the

two superposed modes, i.e.

-j~lz -jB2z -j(31z -ji32z

%=Ale
e +A2e
–1

~2,~t=A1e h +A2e
–1 ~z

Integrating the pointing vector over the fin-line

cross-section, and making use of eqs. (8) and (9),

one obtains

P . J’ (Et
-2UZ

x li~)”ds = j W sin (2@z + q)) e

s
-jV. The vanishing of thewhere A

1
A; p = - (W/2) e

real part of P guarantees that the two superposed

modes carry no power, i.e. they behave as a whole

evanescently. The energy stored in these superposed

modes oscillates along the line once being induc-

tive and once being capacitive in nature with a

superposed exponential decay.

Finally, we would like to state that, although this

phenomenon has been found in fin-lines, we believe

that it also exists in all other planar guiding

structures, at least in those with closed conduc-

ting boundaries.
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